

## LA-UR-19-21684

Approved for public release; distribution is unlimited.

Title: A higher order approximate static condensation method for

multi-material diffusion problems

Author(s): Zhiliakov, Aleksandr

Svyatsky, Daniil Olshanskii, Maxim Kikinzon, Evgeny

Shashkov, Mikhail Jurievich

Intended for: SIAM CSE, 2019-02-25 (Spokane, Washington, United States)

Issued: 2019-02-26



# A higher order approximate static condensation method for multi-material diffusion problems

Alexander Zhiliakov<sup>1</sup>, Daniil Svyatsky<sup>2</sup>, Maxim Olshanskii<sup>1</sup>, Eugene Kikinzon<sup>2</sup>, Mikhail Shashkov<sup>2</sup>

<sup>1</sup>Department of Mathematics University of Houston



<sup>2</sup>Los Alamos National Laboratory



This work was performed under the auspices of the US Department of Energy at Los Alamos National Laboratory under contract DE-AC52-06NA25396; LA-UR-19-20919

**SIAM CSE**, 27 Feb 2019

## Overview

- 1 The ASC(n) Method
  - Problem Setting
  - Description of the Method
  - ASC(0) and ASC(1)
- Numerical Experiments
  - $ASC(0) \rightarrow ASC(1)$ : Motivation
  - Piecewise  $P_1 \& P_2$  Solutions
  - Unsteady Problem

#### Diffusion Problem

Our objective is to solve the diffusion problem in the mixed form

$$\begin{cases} \mathbf{K}^{-1} \mathbf{u} + \nabla p = 0 & \text{in } \Omega \subset \mathbb{R}^2, \\ \nabla \cdot \mathbf{u} + c p = f & \text{in } \Omega, \end{cases}$$

with boundary data

$$p = g_D \quad \text{on } \partial \Omega_D,$$
  $\mathbf{u} \cdot \hat{\mathbf{n}} = g_N \quad \text{on } \partial \Omega_N.$ 

#### Challenges:

- ullet The diffusion tensor  ${f K}$  may sharply vary in  $\Omega$  and may be discontinuous
- We want to use general polygonal meshes, and
- be able to handle material interfaces not aligned with the mesh



 $\mbox{Moment-of-fluid interface reconstruction} \Rightarrow \mbox{reconstructed interface} \\ \mbox{may be discontinuous} \\$ 



 $\mbox{Moment-of-fluid interface reconstruction} \Rightarrow \mbox{reconstructed interface} \\ \mbox{may be discontinuous} \\$ 

#### Local Problem

Consider 
$$T \in \mathcal{T}_H$$
: 
$$\begin{cases} \mathbf{K}^{-1} \mathbf{u} + \nabla p = 0 & \text{in } T, \\ \nabla \cdot \mathbf{u} + c p = f & \text{in } T, \\ p = \lambda & \text{on } \partial T \end{cases}$$

Find trial functions 
$$\langle \mathbf{u}, p \rangle \in \mathbb{H}_{\mathsf{div}}(T) \times \mathbb{L}^2(T)$$
 such that 
$$\begin{cases} \int_T \mathbf{K}^{-1} \, \mathbf{u} \cdot \mathbf{v} \, \mathrm{d}\mathbf{x} - \int_T p \, \nabla \cdot \mathbf{v} \, \mathrm{d}\mathbf{x} = -\int_{\partial T} \boldsymbol{\lambda} \, \mathbf{v} \cdot \hat{\mathbf{n}} \, \mathrm{d} l, \\ \int_T \nabla \cdot \mathbf{u} \, q \, \mathrm{d}\mathbf{x} + \int_T c \, p \, q \, \mathrm{d}\mathbf{x} = \int_T f \, q \, \mathrm{d}\mathbf{x} \end{cases}$$
 holds for all test functions  $\langle \mathbf{v}, q \rangle \in \mathbb{H}_{\mathsf{div}}(T) \times \mathbb{L}^2(T)$ 

ASC(n) Method

### Local Problem



Minimesh  $\tau_h$  of T

#### Discretization

Apply Mimetic Finite Difference Method\*

 $\downarrow \downarrow$ 

$$\begin{pmatrix} \mathbf{M}_{\tau} & \mathbf{B}_{\tau}^{T} \\ -\mathbf{B}_{\tau} & \mathbf{\Sigma}_{\tau} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{\tau} \\ \mathbf{p}_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\tau} \, \mathbf{C}_{\tau} \, \frac{\boldsymbol{\lambda}_{\tau}}{\boldsymbol{\lambda}_{\tau}} \\ \mathbf{f}_{\tau} \end{pmatrix}$$

<sup>\*</sup>L. Beirao da Veiga, K. Lipnikov, G. Manzini
The Mimetic Finite Difference Method for Elliptic Problems
Springer 2014

## Approximate Static Condensation

If one knows the pressure trace  $\lambda$  for each  $T \in \mathcal{T}$ , one can recover the solution in  $\mathcal{T}$ . The idea is (i) to express external flux DOFs in terms of trace DOFs (static condensation),

$$\mathbf{u}_{\tau}^{\text{ext}} \coloneqq \mathbf{E}_{\tau}^{T} \, \mathbf{u}_{\tau} = \mathbf{A}_{\tau} \, \mathbf{C}_{\tau} \, \frac{\mathbf{\lambda}_{\tau}}{\mathbf{\lambda}_{\tau}} - \mathbf{a}_{\tau},$$

and (ii) to get the system for trace DOFs by requiring weak continuity of fluxes. **Problem**: we may have different number of trace DOFs from  $T^+$  and  $T^-$ 



## Approximate Static Condensation



**Solution**: approximate a pressure trace on F with a polynomial  $\lambda_F \in \mathbb{P}^n(F)$  described in terms of its (n+1) moments

$$\lambda_F^{(i)} = \frac{\int_F \lambda \, s_i \, \mathrm{d}I}{|F|}, \quad i = 0, \dots, n.$$

Here  $s_i \in \mathbb{P}^i(F)$  is a fixed polynomial of degree i such that  $s_i \perp_{\mathbb{L}^2} s_i$ , j < i

## ASC(n): DOFs and Constraints

 $\begin{array}{c} \text{.... express trace DOFs on minifaces of } \tau \text{ via} \\ \text{DOFs} \coloneqq (n+1) \text{ moments on each base face of } T, \\ \text{....} \end{array}$ Now we express trace DOFs on minifaces of au via coarse trace

$$egin{aligned} oldsymbol{\lambda}_{oldsymbol{ au}} &= \mathsf{R}_{oldsymbol{ au}} \, oldsymbol{\lambda}_{oldsymbol{ au}} &\Rightarrow \ oldsymbol{\mathsf{u}}_{oldsymbol{ au}}^{\mathsf{ext}} &= oldsymbol{\mathsf{A}}_{oldsymbol{ au}} \, oldsymbol{\mathsf{C}}_{oldsymbol{ au}} \, oldsymbol{\mathsf{R}}_{oldsymbol{ au}} \, oldsymbol{\lambda}_{oldsymbol{ au}} - oldsymbol{\mathsf{a}}_{oldsymbol{ au}}, \end{aligned}$$

and close the system by requiring weak continuity of normal fluxes on each base face  $\int_F \mathbf{u}|_{\mathcal{T}^+} \cdot \hat{\mathbf{n}} \, s_i \, \mathrm{d}I = \int_F \mathbf{u}|_{\mathcal{T}^-} \cdot \hat{\mathbf{n}} \, s_i \, \mathrm{d}I, \ i = 0, \dots, n \text{ for } F \in \mathcal{F}_{\mathrm{int}}$ 

$$\int_{F} \mathbf{u}|_{T^{+}} \cdot \hat{\mathbf{n}} \, s_{i} \, \mathrm{d}l = \int_{F} \mathbf{u}|_{T^{-}} \cdot \hat{\mathbf{n}} \, s_{i} \, \mathrm{d}l, \ i = 0, \dots, n \text{ for } F \in \mathcal{F}_{\mathsf{int}}$$

Express fluxes in terms of traces  $\Rightarrow$  get SLAE for coarse trace **DOFs** 

## ASC(1) DOFs



$$\frac{\begin{pmatrix} \lambda_{11}(\tau) \\ \lambda_{12}(\tau) \\ \lambda_{13}(\tau) \\ \lambda_{21}(\tau) \\ \lambda_{22}(\tau) \\ \lambda_{33}(\tau) \\ \lambda_{31}(\tau) \\ \lambda_{31}(\tau) \\ \lambda_{31}(\tau) \\ \lambda_{31}(\tau) \\ \lambda_{2\tau} = \\ \hline \lambda_{\tau} = \\ \hline \begin{pmatrix} 1 & s_{11} & 0 & 0 & 0 & 0 & 0 \\ 1 & s_{12} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & s_{21} & 0 & 0 & 0 \\ 0 & 0 & 1 & s_{22} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & s_{23} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & s_{32} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline \lambda_{\tau} = \\ \hline \end{pmatrix} \frac{\begin{pmatrix} \lambda_{10}^{(0)}(\tau) \\ \lambda_{11}^{(1)}(\tau) \\ \lambda_{20}^{(1)}(\tau) \\ \lambda_{30}^{(1)}(\tau) \\ \lambda_{30}^{(1)}(\tau) \\ \lambda_{40}^{(1)}(\tau) \\ \lambda_{40}^{(1)}(\tau) \\ \hline \end{pmatrix} }{\kappa_{\tau}} = \frac{\lambda_{\tau}}{\lambda_{\tau}}$$



Here  $s_{ij} := \text{signed distance}$  between  $j\text{th mini-face and } i\text{th macro-face centroids. For ASC(0) the matrix <math>\mathbf{R}_{\tau}$  is as on the left with rows containing  $s_{ij}$ -s eliminated.

## ASC(1) System Assembly

$$\int_{F} \mathbf{u}|_{T^{+}} \cdot \hat{\mathbf{n}} \, \mathbf{s}_{i} \, \mathrm{d}I = \int_{F} \mathbf{u}|_{T^{-}} \cdot \hat{\mathbf{n}} \, \mathbf{s}_{i} \, \mathrm{d}I, \ i = 0, \dots, n \text{ for } F \in \mathcal{F}_{\text{int}}$$

$$\downarrow \downarrow$$

$$n = 0 : \sum_{f \in f_{F}(T^{+})} u_{\tau^{+}}^{\text{ext}}(f) |f| + \sum_{f \in f_{F}(T^{-})} u_{\tau^{-}}^{\text{ext}}(f) |f| = 0,$$

$$n = 1 : \sum_{f \in f_{F}(T^{+})} u_{\tau^{+}}^{\text{ext}}(f) \int_{f} \mathbf{s}_{1} \, \mathrm{d}I + \sum_{f \in f_{F}(T^{-})} u_{\tau^{-}}^{\text{ext}}(f) \int_{f} \mathbf{s}_{1} \, \mathrm{d}I = 0$$

$$\downarrow \downarrow$$

$$\left(\mathbf{R}_{\tau^{+}}^{T} \, \mathbf{C}_{\tau^{+}} \, \mathbf{u}_{\tau^{+}}^{\text{ext}}\right)_{i+m} + \left(\mathbf{R}_{\tau^{-}}^{T} \, \mathbf{C}_{\tau^{-}} \, \mathbf{u}_{\tau^{-}}^{\text{ext}}\right)_{j+m} = 0, \quad m \in \{0, 1\}$$

$$\downarrow \downarrow$$

$$\left(\underbrace{\left(\mathbf{R}_{\tau^{+}}^{T} \, \mathbf{C}_{\tau^{+}} \, \mathbf{A}_{\tau^{+}} \, \mathbf{C}_{\tau^{+}} \, \mathbf{R}_{\tau^{+}}\right)}_{i+m} \, \lambda_{T^{+}}\right)_{i+m} + \left(\underbrace{\left(\mathbf{R}_{\tau^{-}}^{T} \, \mathbf{C}_{\tau^{-}} \, \mathbf{A}_{\tau^{-}} \, \mathbf{C}_{\tau^{-}} \, \mathbf{R}_{\tau^{-}}\right)}_{j+m} \, \lambda_{T^{-}}\right)_{j+m} = 0$$

## ASC(1) System Assembly

$$\int_{F} \mathbf{u}|_{T^{+}} \cdot \hat{\mathbf{n}} \, s_{i} \, dI = \int_{F} \mathbf{u}|_{T^{-}} \cdot \hat{\mathbf{n}} \, s_{i} \, dI, \ i = 0, \dots, n \text{ for } F \in \mathcal{F}_{\text{int}}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

$$\mathbf{S}_{\mathcal{T}} = \sum_{T \in \mathcal{T}} \mathbf{N}_{T}^{T} \mathbf{S}_{T} \mathbf{N}_{T},$$
 Global system: 
$$\mathbf{s}_{\mathcal{T}} = \sum_{T \in \mathcal{T}} \mathbf{N}_{T}^{T} \mathbf{s}_{T},$$
  $\mathbf{S}_{\mathcal{T}} \boldsymbol{\lambda}_{\mathcal{T}} = \mathbf{s}_{\mathcal{T}}$ 

## ASC(1) System Assembly

$$\mathbf{S}_{\mathcal{T}} = \sum_{T \in \mathcal{T}} \mathbf{N}_{T}^{T} \mathbf{S}_{T} \mathbf{N}_{T},$$
 Global system: 
$$\mathbf{s}_{\mathcal{T}} = \sum_{T \in \mathcal{T}} \mathbf{N}_{T}^{T} \mathbf{s}_{T},$$
  $\mathbf{S}_{\mathcal{T}} \boldsymbol{\lambda}_{\mathcal{T}} = \mathbf{s}_{\mathcal{T}}$ 

- **Theorem**: system matrix  $S_{\mathcal{T}}$  is sparse and SPD for ASC(0) and ASC(1)
- Hence efficient solvers and preconditioners are available (e. g. CG + Algebraic Multigrid)
- Once we obtain  $\lambda_{\mathcal{T}}$ , we recover pressure and flux DOFs in each cell  $T \in \mathcal{T}$  (this may be done in parallel)

## ASC(1): Algebraic Robustness (1/2)

Figure: w := width of the left minimesh cells



We solve the diffusion problem w/  $\mathbf{K} = k \mathbf{I}$ , k = 1 on the left part and .1 on the right. Exact solution is piecewise linear

## ASC(1): Algebraic Robustness (2/2)

Figure: Condition Numbers of ASC(0) / ASC(1) Matrices



 $\kappa_{\rm ASC(0)}$  does not depend on w, and  $\kappa_{\rm ASC(1)}$  is proportional to  $w^{-1}$ . However, if we remove 3 smallest eig values (corresponding to 3 int MM faces), we will have  $\tilde{\kappa}_{\rm ASC(1)} \approx \kappa_{\rm ASC(0)}$ . Starting from some iteration CG behaves like extreme eig values are not present; that is, several small eig values is not a problem

## $\ell^2$ -Error

If the base mesh consists of triangles + we have no material interfaces, ASC(n) boils down to Mixed-Hybrid Raviart-Thomas FEM:

$$\|\mathbf{u} - \mathbf{u}_h\|_{\mathbb{L}^2(\Omega)} \le c h \|\mathbf{u}\|_{\mathbb{H}^1(\Omega)},$$
  
$$\|p - p_h\|_{\mathbb{L}^2(\Omega)} \le c \left(h \|p\|_{\mathbb{H}^1(\Omega)} + h^2 \|p\|_{\mathbb{H}^2(\Omega)}\right).$$

That is, we cannot expect  $\mathsf{ASC}(n)$  convergence to be better than linear. We define **discrete**  $\mathbb{L}^2$ -**norm** 

$$\|v\|_{\ell^2(\Omega)} \coloneqq \|P_h v\|_{\mathbb{L}^2(\Omega)} \le \|v\|_{\mathbb{L}^2(\Omega)},$$

where  $P_h:=\mathbb{L}^2$ -projection operator on the space of piecewise constant functions on each cell  $T\in\mathcal{T}$  (or on each  $\tau\in\tau$  if T is a MMC)

## $\mathsf{ASC}(0) o \mathsf{ASC}(1)$ : Motivation



Here  $\mathbf{K}_i = \mathbf{K}_j$  and the exact soln is linear. ASC(0) produces errors due to const trace approximation, and ACS(1) recovers the exact soln

## Piecewise Linear Solution (1/2)

We solve the diffusion problem on the sequence of square meshes w/K = kI, k = 1 on the left part and .1 on the right. Exact solution is piecewise linear



(b) Materials

# Piecewise Linear Solution (2/2)

|        | h                    | $e_p^{\ell^2}$       | $\rho_{p}$ | $e_p^\infty$         | $e_u^{\ell^2}$       | $\rho_{u}$ |
|--------|----------------------|----------------------|------------|----------------------|----------------------|------------|
| ASC(0) | $3.5 \times 10^{-1}$ | $7.3 \times 10^{-1}$ |            | 4.8                  | $6.6 \times 10^{-1}$ |            |
|        | $8.8 \times 10^{-2}$ | $1.6 	imes 10^{-1}$  | 1.1        | 1.2                  | $3.5 	imes 10^{-1}$  | 0.46       |
|        | $2.2 \times 10^{-2}$ | $3.7 \times 10^{-2}$ | 1.1        | $3.4 	imes 10^{-1}$  | $1.3 	imes 10^{-1}$  | 0.71       |
|        | $5.5\times10^{-3}$   | $8.9 \times 10^{-3}$ | 1.0        | $7.9 \times 10^{-2}$ | $4.1 \times 10^{-2}$ | 0.83       |
| ASC(1) | h                    | $e_p^{\ell^2}$       | $\rho_{p}$ | $e_p^\infty$         | $e_u^{\ell^2}$       | $\rho_{u}$ |
|        | $3.5 	imes 10^{-1}$  | $2.5 \times 10^{-2}$ |            | $2.9 \times 10^{-1}$ | $4.6 \times 10^{-2}$ |            |
|        | $8.8 \times 10^{-2}$ | $1.9 \times 10^{-3}$ | 1.84       | $6.6 \times 10^{-2}$ | $2.0 \times 10^{-2}$ | 0.6        |
|        | $2.2 \times 10^{-2}$ | $1.6 \times 10^{-4}$ | 1.79       | $4.3 \times 10^{-2}$ | $5.5 \times 10^{-3}$ | 0.93       |
|        | $5.5 \times 10^{-3}$ | $1.3 \times 10^{-5}$ | 1.80       | $2.0 \times 10^{-2}$ | $1.3 \times 10^{-3}$ | 1.         |

## Piecewise Quadratic Solutions w/ 2 Materials (1/3)

We solve the diffusion problem on Voronoi meshes w/  $\mathbf{K} = k \mathbf{I}$ , k = 1 outside the circle and .001 inside. Exact solution is pw quadratic. We compare convergence of ASC(0) and ASC(1)



## Piecewise Quadratic Solution w/ 2 Materials (2/3)

| ASC(0) | h                    | $e_p^{\ell^2}$       | $\rho_{p}$ | $e_p^\infty$         | $e_u^{\ell^2}$       | $ ho_u$   |
|--------|----------------------|----------------------|------------|----------------------|----------------------|-----------|
|        | $3.0 \times 10^{-1}$ | $2.4 \times 10^{-3}$ |            | $6.3 \times 10^{-1}$ | $6.9 \times 10^{-5}$ |           |
|        | $1.5\times10^{-1}$   | $6.5 \times 10^{-4}$ | 2.0        | $7.0 \times 10^{-3}$ | $3.6 \times 10^{-5}$ | 0.9       |
|        | $8.1 \times 10^{-2}$ | $2.6 \times 10^{-4}$ | 1.4        | $3.2 \times 10^{-3}$ | $3.4 \times 10^{-5}$ | 0.09      |
|        | $4.2 \times 10^{-2}$ | $1.4 \times 10^{-4}$ | 0.9        | $2.3 \times 10^{-3}$ | $2.1 \times 10^{-5}$ | 0.73      |
|        | $2.1 \times 10^{-2}$ | $3.7 \times 10^{-5}$ | 1.9        | $1.1 \times 10^{-3}$ | $1.1 	imes 10^{-5}$  | 0.93      |
|        | $1.0 \times 10^{-2}$ | $2.7 \times 10^{-5}$ | 0.4        | $8.6 \times 10^{-4}$ | $6.5 \times 10^{-6}$ | 0.75      |
| ASC(1) | h                    | $e_p^{\ell^2}$       | $\rho_{p}$ | $e_p^\infty$         | $e_u^{\ell^2}$       | $ ho_{u}$ |
|        | $3.0 \times 10^{-1}$ | $2.4 \times 10^{-3}$ |            | $2.1\times10^{-3}$   | $1.2 \times 10^{-4}$ |           |
|        | $1.5 \times 10^{-1}$ | $7.0 \times 10^{-4}$ | 1.9        | $1.3 \times 10^{-2}$ | $6.5 \times 10^{-5}$ | 0.88      |
|        | $8.1 \times 10^{-2}$ | $2.3 \times 10^{-4}$ | 1.8        | $6.8 \times 10^{-4}$ | $3.0 \times 10^{-5}$ | 1.25      |
|        | $4.2 \times 10^{-2}$ | $6.8 \times 10^{-5}$ | 1.8        | $3.2 \times 10^{-4}$ | $1.4 \times 10^{-5}$ | 1.16      |
|        | $2.1 \times 10^{-2}$ | $2.0 \times 10^{-5}$ | 1.8        | $1.1 \times 10^{-4}$ | $5.0 \times 10^{-6}$ | 1.48      |
|        | $1.0 \times 10^{-2}$ | $5.4 \times 10^{-6}$ | 1.9        | $3.3 \times 10^{-5}$ | $2.2 \times 10^{-6}$ | 1.18      |

We observe a jump of  $\infty$ -error of ASC(1) at  $h = 1.5 \times 10^{-1}$ 

## Piecewise Quadratic Solution w/ 2 Materials (3/3)



## Piecewise Quadratic Solution w/ 3 Materials (1/2)

We solve the diffusion problem on triangular meshes w/  $\mathbf{K} = k \mathbf{I}$ , k=1 outside the ring and .001 inside. Exact solution is piecewise quadratic





## Piecewise Quadratic Solution w/ 3 Materials (2/2)

|        | h                    | $e_p^{\ell^2}$       | $\rho_p$ | $e_p^{\infty}$       |
|--------|----------------------|----------------------|----------|----------------------|
|        | $3.0 \times 10^{-1}$ | 4.5                  |          | 17                   |
| ASC(0) | $2.5 \times 10^{-1}$ | 4.5                  |          | 17                   |
|        | $1.3 \times 10^{-1}$ | 4.0                  |          | 17                   |
|        | $8.3 \times 10^{-2}$ | 4.4                  |          | 17                   |
|        | $6.7 \times 10^{-2}$ | $7.1 \times 10^{-1}$ |          | 4.9                  |
|        | $4.3 \times 10^{-2}$ | $4.5 \times 10^{-1}$ | 1.2      | 5.0                  |
|        | h                    | $e_p^{\ell^2}$       | $\rho_p$ | $e_p^{\infty}$       |
|        | $3.0 \times 10^{-1}$ | $4.5 \times 10^{-1}$ |          | 3.5                  |
| ASC(1) | $2.5 \times 10^{-1}$ | $2.6 \times 10^{-1}$ | 3        | 2.7                  |
|        | $1.3 \times 10^{-1}$ | $9.2 \times 10^{-2}$ | 1.5      | $6.2 \times 10^{-1}$ |
|        | $8.3 \times 10^{-2}$ | $4.8 \times 10^{-2}$ | 1.6      | $8.3 \times 10^{-1}$ |
|        |                      |                      | 2.5      | $2.3 \times 10^{-1}$ |
|        | $6.7 \times 10^{-2}$ | $2.8 \times 10^{-2}$ | 2.5      | 2.3 × 10             |

| Arithmetic homo. | h                                            | $e_{\rm p}^{\ell^2}$                         | $\rho_p$ | $e_p^{\infty}$ |
|------------------|----------------------------------------------|----------------------------------------------|----------|----------------|
|                  | $3.0 \times 10^{-1}$                         | 4.9                                          |          | 17             |
| o<br>P           | $2.5 \times 10^{-1}$                         | 5.0                                          |          | 17             |
| et.              | $1.3 \times 10^{-1}$                         | 4.9                                          |          | 17             |
| 塘                | $8.3 \times 10^{-2}$                         | 4.7                                          |          | 17             |
| Ari              | $6.7 \times 10^{-2}$                         | 4.4                                          |          | 16             |
|                  | $4.3 \times 10^{-2}$                         | $9.7 \times 10^{-1}$                         | 3.5      | 5.7            |
| Harmonic homo.   | h                                            | $e_p^{\ell^2}$                               | $\rho_p$ | $e_p^{\infty}$ |
|                  | $3.0 \times 10^{-1}$                         | 2.3                                          |          | 15             |
|                  | $2.5 \times 10^{-1}$                         | 1.7                                          | 1.6      | 16             |
|                  | $1.3 \times 10^{-1}$                         | $7.3 \times 10^{-1}$                         | 1.2      | 12             |
|                  |                                              |                                              |          | 10             |
| Ē                | $8.3 \times 10^{-2}$                         | $4.8 \times 10^{-1}$                         | 1.0      | 12             |
| Harm             | $8.3 \times 10^{-2}$<br>$6.7 \times 10^{-2}$ | $4.8 \times 10^{-1}$<br>$3.4 \times 10^{-1}$ | 1.6      | 9.4            |

Before  $h = 6.7 \times 10^{-2}$  we have cells / faces with 3 materials, and after this mesh level we have only 2 material MMCs

## Unsteady Problem (1/2)

We solve the unsteady diffusion problem on Voronoi meshes w/  $\mathbf{K} = k \mathbf{I}, k = .002$  inside the ring, 10 in the inner disk, and 1 elsewhere. We set  $g_D = 1$  on the left bndry and 0 on the right; top and bottom bndries are insulated. Equilibrium state is  $p \equiv 1$ 



(a) Conforming (super)mesh



(b) Cuts  $p_*((x,0.5),t)$  of the ref soln

# Unsteady Problem (2/2)



Comparison of the discrete solutions  $p_h$ ,  $h=1.5 imes 10^{-1}$ , t=1.25 (play)

## Summary

#### Results:

- ASC(n) is able to efficiently handle unfitted material interfaces
- $2^{\text{nd}}$  order  $\ell^2$ -convergence for ASC(1)
- Effective condition number seems to be uniformly bounded w.r.t. an interface position
- The underline matrix is SPD and sparse; its pattern does not depend on mini meshes
- A. Zhiliakov et al. A higher order approximate static condensation method for multi-material diffusion problems, 2019 (JCP preprint)

#### TODO List:

 Anisotropic diffusion: homogenization is not applicable; what about ASC(n)?